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Simple ideas of dimensional analysis and of limiting cases are used to elucidate 
the stability characteristics of a steady basic parallel flow of a viscous incom- 
pressible fluid. The principal result is that the stability characteristics of a 
smoothly varying velocity profile for wave disturbances of small wave-number 
can be found by use of a discontinuous velocity profile. The boundary conditions 
for a disturbance at a discontinuity of the basic flow are derived, and are used to 
find the atability characteristics of broken-line representations of the half-jet 
and jet. These findings are in agreement with previous ones. 

1. Introduction 
Most work on the Orr-Sommerfeld equation involves elaborate analysis 

(cf. Lin 1955). It seems desirable to devise simpler, though possibly less infor- 
mative, methods in order to understand the nature of instability more directly, 
to teach the analysis to graduate classes, and to make it accessible to specialists 
in other fields. Such methods could aid new calculations of stability character- 
istics when the influence of variation of density or viscosity, of magnetic fields, 
or of rotating systems is considered. In this paper dimensional analysis and 
limiting cases of small Reynolds number or small wave-number will be used. The 
principal result is an interpretation and justification of the use of diecontinuom 
velocity profiles for finding stability characteristics of a parallel flow of a viscous 
incompressible fluid. 

Recently, the stability characteristics of an unbounded jet (Tatsumi & 
Kakutani 1958; Howard 1959) and half-jet (Tatsumi & Gotoh 1960) have been 
found by use of expansions in the wave-number, valid when that number is 
small. In these papers the growth rate of a small wave disturbance was expressed 
essentially as an explicit algebraic function of integrals of the velocity distribu- 
tion function of the basic flow. Because only integrals of the velocity distribution 
are involved, these methods could be used for discontinuous velocity distribu- 
tions. For example, a piecewise-constant distribution could be used to approxi- 
mate the growth rate of a smoothly varying distribution as closely as desired. 
The apparent physical absurdity of a discontinuity of velocity in a viscous 
fluid will be shown in this paper to arise from a misinterpretation of a mathe- 
matical method of approximation valid for small wave-numbers. In fact, Each 
(1957) has already used the basic velocity distribution 
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with two discontinuities of viscous stress to represent the half-jet. He assumed 
three, and then proved the fourth, of the boundary conditions at each of the 
discontinuities y* = f L. These conditions were used to join up the solutions in 
the regions yg > L, L > y* > - L, - L > y* and get the eigenvalue relation for 
the growth rate. In Q 2 we shall prove Esch's four conditions at a discontinuity 
of basic velocity as well as stress. I n  $03, 4 these conditions will be applied to 
broken-line representations of the velocity profiles of the half-jet and jet. The 
results are in agreement with those of Tatsumi & Gotoh (1960) and of Tatsumi 
& Kakutani (1958, 1960). 

First, we shall summarize the eigenvalue problem used to derive the stability 
characteristics, and introduce some ideas of dimensional analysis and of limiting 
cases. When a basic flow with velocity w,(y*) in the x,-direction is bounded by 
rigid walls at y* = y*l, y*2 (where yS1 and/or y,2 may be infinite if the flow is 
unbounded), it is known (cf. Lin 1955) that the stability characteristics can be 
found from the eigenvalues of the Orr-Sommerfeld equation 

(DI - q5* = (i.*l4 {(w* - c,) PI - ae,q5* - (qPJ,) q5*} (2) 

a*$* = 0 = D*q5* for Y* = Y,l, Ya2. (3) 

and the boundary conditions 

An asterisk is used as a subscript to denote dimensional parameters and variables ; 
D, = d/dy*; and v is the kinematic viscosity of the fluid, The solution of the 
eigenvalue problem gives the stream function of a perturbation of the basic flow, 
assumed to be of the form 

(4) 

Thus, the flow is stable or unstable to small disturbances of positive wave- 
number a, accordingly as the imaginary part cyci of the complex velocity c,(aU) 
is negative or positive, respectively. 

If the velocity distribution ws( y+) is dimensionally characterized by some 
length scale L and velocity scale V ,  the Reynolds number may be defined as 

9% = $MY*) exp @ d X *  - c*t*>>. 

R = VL/v. ( 5 )  

With dimensionlessvariables y = y*/L, w(y) = V-lw*(y*), #(y) = V-lL--l$,(y*) 
and parameters a = a*L,.c f V-b,, the Orr-Sommerfeld equation becomes 

(D2-a2)2q5 = i~tR{(~-~)(D~-a~)q5-(D~~)q5}, (6) 

aq5 = 0 = Dq5 for y = yl, y2. (7) 

and the boundary conditions become 

The solutions of the equation are integral functions of y, e, a2 and aR (or R/a). 
This leads to an eigenvalue relation of the form P(c, a2, R/a) = 0,  where F is an 
integral function of c, a2, R/a. This may be written as 

c = ~ ( a ,  Ria), (8) 

which function may be multi- or single-valued or undefined for given values of 
a, Rla. 
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We shall now take the argument applied by Drazin & Howard (1961) to stability 
of an inviscid fluid and generalize it for a viscous fluid. Let us consider unbounded 
flows only, with derivatives of the velocity distribution function tending to 
zero at infinity. These flows are of two basic types. For the half-jet type, 
w*( - CO) + w*(Go). We may choose the origin of velocity (by making a Galilean 
transformation if necessary) so that w*( - GO) = - w*(co). This may change cr, 
but not ci, and hence not the growth rate of the disturbance. We then take 
V = w*(Go). For the jet type, w*( -GO) = w*(co); and we choose the origin of 
velocity so that w*(co) = 0. We shall not specify V for this case generally. These 

because y*/L -+ & GO accordingly as ya > 0, respectively. Also a -+ 0, 
R/a = const. as L -+ 0 for fixed a*. Therefore c -+ c(0, R/a) = f ( V/a* v), say, and 

c* --+ ~fV/.*v).  (11) 

(We have assumed that the model is physically reasonable so that these limits 
may exist.) 

Consider the two limits: ( a )  a* -+ 0 for fixed R/a = V/a*v and L;  ( b )  L -+ 0 
for fixed a* and V/v.  Each limit, (a )  or (b ) ,  gives a -+ 0 for fixed R/a. Therefore 
each limit for fixed w(y) gives the same limiting form,f(R/a) of c(a, R/a) as a -+ 0 
for fixed R/a. Therefore the stability characteristics c* -+ Vf ( V/a* v) are valid 
for both the limiting profile w* when L -+ 0 and the original wg when a* -+ 0. 
The limiting profile w* when L -+ 0 may have discontinuities or discontinuities 
of its derivatives. It will be shown that such profiles may be used to find the 
stability characteristics of smoothly varying profiles as a* -+ 0 in this way. 

These arguments show that all profiles of the half-jet type have the same 
stability characteristics as a -+ 0. These characteristics will be found directly in 
$ 3  by use of the profile w* = Vya/I y*l to determine f (V/a* v). Our results agree 
with those of Tatsumi & Gotoh (1960). 

For profiles of the jet type, w* -+ 0 as L -+ 0. If w* = 0, there is no non-zero 
eigensolution of the Om-Sommerfeld equation which vanishes at infinity. 
However, 

is a solution bounded at infinity. If this is an acceptable limit of the eigensolution, 
then 

(Tatsumi & Kakutani (1958, equations (5.3), (5.8), (6.9)) show that in fact this 
is the proper limit, with 9 N const. x exp { - [az + iaR(w - c)]+ I y I} as a -+ 0, the 

c +  -ia/R as a+O for fixed R/a. (13) 
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square-root having non-negative real part.) In $ 4  we use the broken-line 
representation 

of the jet to fmd a better approximation than (13). A lower branch of the curve 
of neutral stability ci(a,R/a) = 0 is found; it is of the same form as found by 
Tatsumi & Kakutani (1958) and Howard (1959) for the smoothly varying jet with 
w* = V sech2 (y*/L). A second branch of similar form also is found. 

The above arguments are as valid for flows with one finite boundary as for 
flows with none. However, for flows with two finite boundaries there is an 
imposed length scale, namely, the distance between the boundaries, which cannot 
tend to zero without removing the field of flow. 

If we let V -+ 0 for a fixed function w(y), then w* -+ 0. Therefore 

4 -+ a* vg(a*L) 
by dimensional analysis. Therefore c - (a/R) g(a) as R -+ 0 for fixed a. If we 
may suppose that the shape of the profile w* is unimportant as V -+ 0, we may 
deduce from equation (1 2) that g(a) = - i, and 

as R -+ 0 for fixed a. 
Having examined the limit a* -+ 0, let us put a* = 0. Then the stream func- 

tion of the disturbance +& = $*(y*) exp ( - got*), for cr# E iauc* need not 
vanish as a* -+ 0. Then the longitudinal and lateral velocity components of the 
disturbance are respectively 

it can be seen that the velocity of the disturbance is parallel to the basic flow. 

c N -ia/R (15) 

U& = a$&/ay, = (D*&) exp ( -  u*t*), V; = - a+;/iiX* = 0; 

In this case with a* = 0 the Om-Sommerfeld equation is 

- C* D i  #* = vD; &. 
Therefore 

1, Y*, exp r * i Y * ( 4 J + I  (c* 4 O ) ,  

1 7  3% Y L  Y$ (u* = 0). 
+*w { 

If yal = - L, y*z = L, the eigensolution satisfying boundary conditions (7) is 
either 

q5* cc sin[(u*/v))ya], a* = 0, r*/v = (nn/L)2 (n = 0,  & 1, & 2, ...), (16) 

For the former mode (16), c = - i(nn)2 Rla. If y*l and/or y*2 is infinite, the only 
eigensolution is ( 17). 

In contrast to this, the Navier-Stokes equations for parallel flow reduce to 

or = const., a* = 0, uic indeterminate. (17) 

the diffusion equation au,/at, = va2uyc/ay;, 
whose solution for bounded flow is 

where 
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and for unbounded flow the solution is 

However, the above solutions of the Om-Sommerfeld and Navier-Stokes 
equations differ when the flow is unbounded (or semi-bounded, similarly). 
The difference occurs because no enumerable set of eigenfunctions of the Orr- 
Sommerfeld equation can form a base for solutions of the Navier-Stokes equa- 
tions. In  fact, a Fourier integral of solutions of the Orr-Sommerfeld can satisfy 
the boundary conditions though no single solution can. 

In  our search for simplicity we shall not comment further on the relation of 
the initial-value problem to that of separate wave components. We have con- 
sidered the special case a* = 0 to see if it can shed some light on the solution 
of the Orr-Sommerfeld equation. Now all solutions of the diffusion equation 
are stable, so i t  might be concluded that those of the Orr-Sommerfeld equation 
give c*i < 0 as u* -+ 0 for fixed v. This conclusion contradicts a result of Tatsumi 
& Gotoh (1960). The discrepancy appears to be due to the breakdown of the 
assumption of the existence of a steady parallel flow w*(y*), made in the deriva- 
tion of the Orr-Sommerfeld equation. As Tatsumi & Gotoh pointed out, when 
R or a is small, no unbounded steady flow is even approximately parallel in a 
characteristic length a-l. We may add that the characteristic rate of change 
v/L2 of unbounded parallel flow is not very much less than the change a*c* of 
a small disturbance if R or a is small. In  that case, the Om-Sommerfeld equation 
has no physical relevance. However, mathematical knowledge of the limiting 
forms of the eigensolutions is nonetheless useful as a means to find the eigen- 
solutions at greater values of R, a* for which the Orr-Sommerfeld equation does 
describe approximately a real perturbation. 

2. The boundary conditions for the disturbance at a discontinuity of 
the basic flow 

I n  deducing the Om-Sommerfeld equation (cf. Lin 1955), it is found that the 
equations of motion give 

and, for the pressure of the disturbance, 
a;c = exp @*(.a -eat*)}, v;E = - ia,@* exp {k&qf -c*t*)}, 

P;c = PW*w* )  $a - (w* - c*) D* $* - ivagl(D; - a;) D* @*I 
x exp @*(x*- c*t*)} ,  

where p is the density of the fluid. Therefore the components of the stress tensor 
of the basic flow and the disturbance superposed are 

P*zz = PUW* - 4 D* $* - tD*w*) $* + i v a o w ;  + a;) D*$*} 

P**v = P*,, = PVD*W* + P Y w ;  + a;) #*I exp {kF(.* - Get*,>, 
P*v = Pow* - c*) - ( ~ * w * )  9% + ivagl(D; - 3 4 )  ~ * $ d  

x exp {ia*(.* - .*&)>> 

x exp {ia,(x, - c, t*)). 
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For stability of fluid at rest under the influence of gravity, Harrison (1908) 
supposed that these velocity and stress components were continuous at an inter- 
face where the density and viscosity were discontinuous. This method has also 
been used by Lock ( 1  954) to deal with a basic flow under gravity with discon- 
tinuous viscosity and density distributions but continuous velocity and stress. 
For a basic flow (not under gravity) with continuous velocity but discontinuous 
stress, Esch (1 957) implicitly assumed that #*, D, #,, D$& were continuous, 
and then deduced the 'jump' of D;q& at the discontinuity of basic stress as 
follows. If the Orr-Sommerfeld equation is integrated from ~ , ~ - e  to yao+e 
across the discontinuity of D,w, a t  y, = y*o, we find 

as 8 -+ 0, where square brackets are used to denote the 'jump', or difference 
across the discontinuity, of their contents. We shall develop this argument by 
showing that #*, Dy, 9% are continuous if wilt is piecewise continuously differen- 
tiable, and that discontinuous profiles may be used to approximate the eigen- 
value c, for a smoothly varying velocity profile at small wave-numbers. In  view 
of the unphysical nature of the use of the discontinuous profiles, it seems wisest to 
abandon consideration of continuity of velocity or stress when seeking the 
approximate solution of the Orr-Sommerfeld equation. (Another reason is 
that that equation itself is derived by the approximation that the basic flow is 
an exact solution of the Navier-Stokes equations.) The Orr-Sommerfeld equa- 
tion has solutions in simple terms of known functions in two cases: the solutions 
are exponential if wB(y%) is constant, and involve Airy and exponential functions 
if w,(y,) is linear. Our aim is merely to use these simple solutions to compute 
approximate values of c* for curved profiles, as Rayleigh did in1880 (cf. Rayleigh 
1945, ch. 21) for an inviscid fluid. 

Successive integrals of the Orr-Sommerfeld equation are 

D; #* - ia* v-'{(w* - c,) D, #* - (D* w,) $*I 
= 2 4  D* 6, - a$ D;' #, - ia; v-'D;l (?a% - c,) &, ( 19)  

D i  9, + iag v-'(w* - c*) #* = 2 4  #* - CC$ Da2 

+ ia* V-'(~DG'(W* - c*) D%#s - Ds2(w* - c*) #*}, (20) 

D, #* = 2a; DG' #* - a$ D s 3  #% + ia* v-~(~DG'  W ,  D, #a 

- 2 ~ s  D$#* - Da2 ( W* - c*) #*}. (21) 

These equations suggest that D$ &, D; &, Dg 4, become discontinuous when 
a smoothly varying function wa(yl*) tends to a discontinuous one for a fixed 
function w(y),  because these differentials equal sums involving D$ w,, D*w* 
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and w*. However, D,&, 4% should be continuous, because they depend on w* 
through its integrals only. 

To prove this, suppose parameters a;, a8u-l and the function w(y) are fixed 
and non-zero as L --f 0. Further, if the flow is unbounded, suppose that all 
derivatives of w(y)  vanish at infinity, so that w is bounded. 

Integrability or boundedness (though not continuity or differentiability) of 
a function of y implies the same of the corresponding function of y* in the limit 
L --f 0. Therefore &(y*), like $ ( y ) ,  is bounded. It follows that all terms, except 
DG2w*D*& possibly, of the right-hand side of equation (21) are continuous 
functions of y* in the limit L -+ 0. To show that this term also is continuous, we 
need only note that 

which is bounded, because Iw] and [D-l I D $ l ] ~  are. Thus, the right-hand side 
of equation (21), and therefore D,&, is continuous. The integral of equation 
(21) shows that & is continuous. Finally, the right-hand sides of equations (19) 
and (20) give the jumps of D i  $* and D i  $* as L -+ 0. Thus, 

[#*I = 0, 

[D*4*1 = 0, 

$* + ;a* lJ-l(W* - c*) $*I = 0, 

$* - ia* v-l((w* - Q.1 D* #* - (D*w*) $*)I = 0. 

These conditions are valid m L --f 0 for bounded a*, a*v-l, in the sense that the 
resultant limiting profile w*(y*) will give the same stability characteristics as 
the smoothly varying profile w(y)  does for small a. 

These conditions may be applied to any flow, bounded, semi-bounded or 
unbounded, with only one length scale. However, bounded flows have an 
imposed length scale, y*2 - ysl, which cannot tend to zero without the field of 
flow vanishing. When the basic flow has two length scales, we may suppose H 
is characteristic of distances between regions of shear of order VIL; in particular, 
we may take H = y*2 - y*l for bounded flows. Then the above boundary con- 
ditions are still valid as L -+ 0 in the above sense. Note that Y only occurs in the 
combination aYcu-l, so that it is possible to let a*H -+ 0 for fixed a*H2Vv-l in 
this case. 

It is known (cf. Lin 1955) that bounded flows are stable as a -+ 0 for bounded 
aR, and that their mechanism of instability is associated with the singularity 
of the critical layer where w*(y*) = cg when aR -+ 03 for fixed a. This mechanism 
can never be described by our conditions derived for small L, i.e. for small a. 
Thus we shall apply our conditions to unbounded flows only, for which instability 
occurs at small a and finite aR, and not bother to verify the stability of bounded 
flows for this range of a and R. 

We shall not consider the smoothly varying profile further in our analysis, so 
it is convenient to redefine dimensionless variables with H as length scale after 

37 Fluid Mech. 10 
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taking the limit L --f 0. Thus, with a = a,H, R = VH/v,  w(y) = V-'w*(y*/H), 
etc., henceforth, we get dimensionless conditions 

for bounded a, UR at a discontinuity of w and/or Dw. 
Rayleigh's use (1945, ch. 21) of broken-line profiles for the stability equation 

(w-c)(D'-~ ' )$-(D'w)$ = 0 (26) 

of an inviscid fluid can be justified similarly from the integrals 

(W -c) D# - (Dw) 4 = u'D-'(w - C) 9, 
#/(w - c )  = a2D-l(w - c)-' D-I(w - c )  4. 

It can be seen that 
[(w - 4 D c  - (Dw) $1 = 0, (27) 

rc/(w -41 = 0 (28) 

at a discontinuity of w or Dw. In  fact, these are the familiar conditions that 
pressure and normal velocity respectively are continuous at  an interface. 
(Critical reviews of the validity of these conditions are given by Lin (1945, 
pp. 121, 221) and by Drazin t Howard (1961).) 

3. Broken-line half-jet 
If w(y) is piecewise constant, the Orr-Sommerfeld equation has solutions 

where 
(29) 

(30) 

has non-negative real part for definiteness. In this case the boundary conditions 

(31) 
(22) to (25) become 

[el = 0, 
cDcl= 0, (32) 

[(D2+P2) $1 = 0, (33) 

[(D2-B2) D#] = 0. (34) 

The simplest flow is that in which w has one jump; this is the Helmholtz flow 
or broken-line half-jet with 

w = Yl lYI  (--m < Y < m). (35) 

(In this case the basic flow has only one length scale L, but we may choose H 
arbitrarily for use in the dimensionless equations.) The most general solution 
of the Om-Sommerfeld equation satisfying the boundary conditions at infinity 
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for some constants A, B, D, E where 

P1 = +{aZ-iaR(c- I)}*, P2 = +{aZ-iaR(c+ l)}%. (37) 

The boundary conditions (31) to (34) at y = 0 give four homogeneous linear 
equations in A, By D, E. A non-zero solution exists if and only if their discriminant 
is zero; thus the eigenvdue relation is 

1 1 1 1 
-a - 81 oc 8 2  

~94+a~ 284 B%+a2 2~9% 
O =  

a(p:-a2) 0 -a(&-a2) 0 

1 1 1 I 

This last equation is E,,, = 0 in equation (4.2) of Tatsumi & Gotoh (1960). 
On evaluation of that determinant , they found 

2a(P,- a) (P2 - a )  (A+ P Z )  (18; +Pi -PIP2 + a(P1 + P a )  + 4 = 0. 

P; +Pi -81P2 + a(P1 + P a )  + a2 = 0, 

The only roots relevant to the flow are those of 

(39) 

which is equation (4.8) of Tatsumi & Gotoh (1960). On division by a2 it can be 
seen that this equation is reducible to the form (1 l ) ,  viz. c = f(R/a). On squaring 
(39) twice to eliminate radicals, we find a quadratic in R/a whose roots are 

Therefore 
R/a = - 4i(c f 3%)/(3fc 5 Q2. 

c = 6 - 2i(a/R) & 3% 5 2{ - (a/R)2 k 2.3*(a/R)}*. 

(40) 

(41) 

The Grst and third 5 signs are ordered as those in the previous equation; the 
second is independent. It can be shown from equation (39) that the appropriate 
solution with Reg,, Re& 2 0 is given by 

c, = 0, (42) 

ci = +[3* - 2(a/R) - ~ { ( U / R ) ~  + 2.3*(a/R)}*Jy (43) 

or a/R = (1 - 3*cJ2/4(3f - CJ. (44) 

and 

This is the solution of Tatsumi & Gotoh. 
It follows that 

c - 4ia/3R as R/a -+ 0, 

and c + 3-*i as R/a -+ co. 
(45) 

(46) 

Also the curve of neutral stability (ci = 0)  is 

R = 4.3*a, (47) 

as found by Esch (1957) and Tatsumi & Gotoh (1960). 
37-2 
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1 1 1 1 

P1tanhP1 -a - Po a tanh a 
p;+a2 2p; P: + a2 2P: I a(Bt - a2) 0 - a(p: - a2) tanh a 0 

4. Broken-line jet 

(51) = 0. 

Suppose 

The anti-symmetric disturbance with even #(y) is thought (cf. Tatsumi & Kaku- 
tani 1958; Howard 1959; Clenshaw & Elliott 1960; Drazin & Howard 1961)  to^ 
be the least stable for even profiles, so we shall take the most general even solution 

cosh ay + coshpl,y 
cosha coshp, 

# = {  B -  
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When R -+ 00 for fixed X = aR2, equation (52 )  gives 

c = a2(4(X-l - $) - 4iX-'R-'(&X2 - 3 X  + 4 )  + O(R-2)). (53 )  

4 x 2 - 3 x + 4  4 6  = 0.  (54)  

Therefore ci(a, R )  = 0 has asymptotes 

Thus, there are branches of the curve of neutral stability on which aR2 -+ 1.34 
or 32.4 and c - 1 . 5 4 ~ ~ ~  or - 1 . 2 1 ~ ~ 2 ,  respectively, as a + 0.  The relation (53 )  has 
been found by Tatsumi & Kakutani (1960) t ,  and is similar to that for the smoothly 
varying jet w = sech2 y .  

If symmetric disturbances with odd $(y) are considered instead of anti- 
symmetric disturbances (49 ) ,  it can be seen that the eigenvalue equation is the 
same as (52) except that hyperbolic cotangents replace hyperbolic tangents. 
Thus, in the limit aR -+ cg for fixed a, c has complex conjugate values and the 
flow is unstable if a > coth-l(7+4.3&). AS a -+ 0 for fixed aR, equation (52), 
modified for symmetric disturbances, gives 

This has limiting solution 
POP,+ (2P:-P3tanhPl = O W .  

c = 1 -I- 2n2n2/aR, 

aR = 2n27r2/[1-%cosh2(nn)(1-(1-$sech2(nn))~}] (n = 1 , 2 , 3 , . . . ) .  (55)  

This type of behaviour, viz. c -+ const., aR -+ const. on the lower branch of the 
curve of neutral stability, has already been found by Clenshaw & Elliott (1960) 
for symmetric disturbances of the jet w = sech2 y .  The precise result (55 )  for the 
broken-line jet is new. It may be noted that these results confirm the greater 
instability of antisymmetric disturbances. 

5. Discussion 
The use of discontinuous profles is suitable for small wave-numbers, for which 

variations of velocity of a smoothly varying profile occur in a small fraction of 
a wavelength. This use is the antithesis of the W.K.B. approximation, in which 
it is assumed that the coefficients of an ordinary differential equation are slowly 
varying. We shall not pursue the W.K.B. approximation because it is valid only 
for large wave-numbers, for which it is already known that flows are stable. 

The stability characteristics (43 )  of a vortex-sheet or broken-line half-jet 
give ci = 3-&, and therefore instability, when R -+ co. It might be thought that 
the wavelength was the only length-scale in instability of a vortex-sheet, and 
that therefore this result should agree with Helmholtz's that ci = & 1 for all 

f In  this unpublished letter the authors pointed out that they had recently found that 
terms of order should be included in equation (6.4) of their paper of 1958 for the 
calculation of the proper limit of c for a jet-like profile as a + 0. The term 

~ ( c z R ) ~ { -  4(6a - 138) - 3/3 log 2+ *na(3a - 48) -#(a -8) (log 2)') 

should be added to equation (7.3) of their paper of 1958 on the stability of the Biclrley 
jet w = secha y. This gives c / a a  + 2(2X-1 - 1) a.s a + 0, when (gnZ - 1) X 2  - 9 5  + 8 = 0, the 
result first found by Howard (1959). It gives aR2 + 0.954 and c N 2.19a2 as a + 0 on the 
lower branch of the curve of neutral stability. They also extended their results of 1958 
to other jet-like profiles. In particular they found the stability characteristics of the 
broken-line jet for small a ;  our equation (53) agrees with these. 
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wave disturbances of a vortex-sheet in an inviscid fluid. This superficial con- 
tradiction can be resolved by remembering that our results are not for a vortex- 
sheet but for a smoothly varying half-jet in a certain limit of small wave-number. 
We took a -+ 0 for fixed R/a and then let R -+ 03, and Helmholtz’s result comes 
from taking aR -+ 03 first. The former corresponds to the origin and the latter to 
infinity in the (a, R)-plane. For similar reasons we cannot expect our eigenvalues 
(53) for the broken-line jet to be related to Rayleigh’s eigenvalues for the same 
jet in an inviscid fluid. 

The use of discontinuous profiles in Q$2-4 is a simple tool to find stability 
characteristics for bounded aR and small a, but cannot be used for more. This 
limitation means that the method is not suitable for bounded or semi-bounded 
flows, which are already known to be stable in that region of the (a, R)-plane. 

Tatsumi & Kakutani (1960) have given our approximation (53) to the eigen- 
value of an antisymmetric disturbance of the broken-line jet by their series in 
aR (Tatsumi & Kakutani 1958). We presume that the complete power series 
can be shown to give our eigenvalue relation (52). Our result (55) for the sym- 
metric disturbance is in qualitative agreement with that of Clenshaw & Elliott 
(1960) for the Bickley jet w = sechzy. 

Equation (53) shows that there is instability between the two branches of the 
curve of neutral stability on which aR2 -+ 1.54 and 32.4 as a + 0, i.e. the flow is 
unstable for values of (a, R) between these two branches. This strange result is 
not due to the broken-line profile, because similar behaviour can be found for 
the smoothly varying jet w = sech2 y. Howard’s (1959) results imply that 

ci = - 2aR-3{(&r2- 1) (aR2)2 - 9(aR2) + 8 + O(R-2)) 
as a+ 0. Again, this gives instability as R+co if 0.954 < aR2 < 13.0 and 
stability if aR2 lies outside that interval. The significance of these two roots does 
not appear to have been recognized by previous authors. 

We have found three branches of the curve (or curves) of neutral stability for 
the broken-line jet as R -+ co. On the lowest aR2 -+ 1-54, on the middle aR2 -+ 32.4, 
on the highest a+ tanh-l(7-4.3*). The flow is unstable above the highest 
branch and between the lower pair. There do not appear to be any other branches 
as R + 00, and it may be concluded that the middle joins up with the highest, and 
that a + co on the other end of the lowest branch. This gives two curves of 
neutral stability, between which there is instability. However, the broken-line 
jet can tell us little of the analogous behaviour of the smoothly varying jet, 
because they do not have similar stability characteristics when aR + co or a is 
not small. This discrepancy was anticipated in Q 2, where it was pointed out that 
the proof of conditions (22)-(25) was invalid for infinite aR. 

For the jet w = sechzy, three branches of the curve of neutral stability are 
known at large Reynolds numbers. On the highest, a --f 2 and q5 + sech2y as 
R -+ a. On the lower pair, aR2 --f 0.954 or 13.0. There is instability directly 
below the highest branch and between the lower pair. I am indebted to Dr J. T. 
Stuart, who in a private letter conjectured the synthesis of the above properties 
shown schematically in figure 1. The lowest branch joins with the highest, as 
supposed by Tatsumi & Kakutani (1958), Howard (1959) and Clenshaw & 
Elliott (1960). However, the middle branch may return to infinity with asymp- 
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totic behaviour aRp -+ constant as R + ca for 0 < p < 1. This gives a 'minor' 
curve of neutral stability inside the 'major' curve found by previous authors, 
the region of instability being between the two curves. On the upper branch of 
the minor curve aR -+ CQ, so it might be expected that q5 -+ w, c + 0, the 'trivial ' 
eigensolution of the stability equation (26) for an inviscid fluid when a = 0. 
If this were so, the argument Howard (1959, p. 285) suggested as plausible would 
be false. He made the explicit assumption that an integration and the limit 

R 
FIUURE 1. Sketch of the curve of neutral stability of the anti-symmetrical disturbance of 
a eymmetrical smoothly varying jet. Conjectured parts of the curve me denoted by 
broken lines. 

R -+ co could be inverted in order to show that the trivial solution was not a 
limit of the viscous eigensolution for unbounded flow; this inversion would be 
invalid if, for example, q5 N w + R-lexp ( - y2/R2) as R -f 00, and now seems so 
for the actual eigensolution. 

This conjecture of Stuart might be confirmed by the asymptotic theory of the 
Orr-Sommerfeld equation for large aR. However, the work of Tatsumi & 
Kakutani (1958), Howard (1959), and Clenshaw & Elliott (1960) shows clearly 
the occurrence and form of the most unstable disturbances of a jet, which will 
dominate the less unstable ones represented by points inside the ' minor ' curve. 
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